Diving deeper into Zebrafish development of social behavior: analyzing high resolution data.
نویسندگان
چکیده
Vertebrate model organisms have been utilized in high throughput screening but only with substantial cost and human capital investment. The zebrafish is a vertebrate model species that is a promising and cost effective candidate for efficient high throughput screening. Larval zebrafish have already been successfully employed in this regard (Lessman, 2011), but adult zebrafish also show great promise. High throughput screening requires the use of a large number of subjects and collection of substantial amount of data. Collection of data is only one of the demanding aspects of screening. However, in most screening approaches that involve behavioral data the main bottleneck that slows throughput is the time consuming aspect of analysis of the collected data. Some automated analytical tools do exist, but often they only work for one subject at a time, eliminating the possibility of fully utilizing zebrafish as a screening tool. This is a particularly important limitation for such complex phenotypes as social behavior. Testing multiple fish at a time can reveal complex social interactions but it may also allow the identification of outliers from a group of mutagenized or pharmacologically treated fish. Here, we describe a novel method using a custom software tool developed within our laboratory, which enables tracking multiple fish, in combination with a sophisticated analytical approach for summarizing and analyzing high resolution behavioral data. This paper focuses on the latter, the analytic tool, which we have developed using the R programming language and environment for statistical computing. We argue that combining sophisticated data collection methods with appropriate analytical tools will propel zebrafish into the future of neurobehavioral genetic research.
منابع مشابه
The utility of zebrafish to study the mechanisms by which ethanol affects social behavior and anxiety during early brain development.
Exposure to moderate levels of ethanol during brain development has a number of effects on social behavior but the molecular mechanisms that mediate this are not well understood. Gaining a better understanding of these factors may help to develop therapeutic interventions in the future. Zebrafish offer a potentially useful model in this regard. Here, we introduce a zebrafish model of moderate p...
متن کاملBehavioral and Molecular Analysis of Antioxidative Potential of Rosmarinic Acid Against Methamphetamine-induced Augmentation of Casp3a mRNA in the Zebrafish Brain
Introduction: Methamphetamine (MA) acts as a powerful oxidant agent, while Rosmarinic Acid (RA) is an effective herbal antioxidant. Oxidative stress-mediated by MA results in apoptosis, and caspase-3 is one of the critical enzymes in the apoptosis process. MA can epigenetically alter gene regulation. In this paper, to investigate the effects of RA on MA-mediated oxidative stress, changes in the...
متن کاملUnderstanding behavioral and physiological phenotypes of stress and anxiety in zebrafish.
The zebrafish (Danio rerio) is emerging as a promising model organism for experimental studies of stress and anxiety. Here we further validate zebrafish models of stress by analyzing how environmental and pharmacological manipulations affect their behavioral and physiological phenotypes. Experimental manipulations included exposure to alarm pheromone, chronic exposure to fluoxetine, acute expos...
متن کاملBrief embryonic strychnine exposure in zebrafish causes long-term adult behavioral impairment with indications of embryonic synaptic changes.
Zebrafish provide a powerful model of the impacts of embryonic toxicant exposure on neural development that may result in long-term behavioral dysfunction. In this study, zebrafish embryos were treated with 1.5mM strychnine for short embryonic time windows to induce transient changes in inhibitory neural signaling, and were subsequently raised in untreated water until adulthood. PCR analysis sh...
متن کاملFine-scale foraging movements by fish-eating killer whales (Orcinus orca) relate to the vertical distributions and escape responses of salmonid prey (Oncorhynchus spp.)
BACKGROUND We sought to quantitatively describe the fine-scale foraging behavior of northern resident killer whales (Orcinus orca), a population of fish-eating killer whales that feeds almost exclusively on Pacific salmon (Oncorhynchus spp.). To reconstruct the underwater movements of these specialist predators, we deployed 34 biologging Dtags on 32 individuals and collected high-resolution, th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neuroscience methods
دوره 234 شماره
صفحات -
تاریخ انتشار 2014